pda.org

Disinfectant Testing and Test Methods

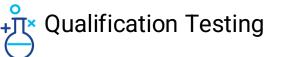
Dan Klein

Sr. Manager, Technical Services

STERIS Corporation, St. Louis, MO, USA

Disinfectant Testing and Test Methods

- Long history of method development and disinfectant testing
 - R&D and Contract Lab Management
 - AOAC Committee M Chair
 - ASTM E35.15
 - First big presentation was on testing
 - CSMA (then CSPA, then HCPA)
 - June, 1999



Disinfectant Testing and Test Methods

Supplier / Registration Testing

- US Environmental Protection Agency
- Europe and Rest of World

- Disinfectant Efficacy Testing (DET)
- In situ Evaluations

US EPA

- Methods Typically taken from AOAC Chapter 6, Disinfectants
 Primarily qualitative
- Pass/Fail Criteria differ for bacteria, TB, fungi and spores
 - Developed in the '50's for *S. aureus* outbreaks

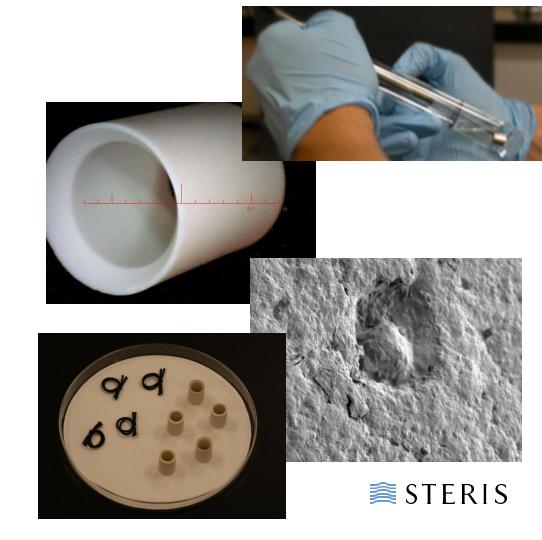
Difficult to change

CONNECTING	
PEOPLE	
SCIENCE	
REGULATION*	

CLAIM	TEST REPLICATES	TEST METHOD(S)	TEST ORGANISMS	PASS/FAIL CRITERIA		
	60 carriers per lot per	AOAC Use-	Staphylococcus aureus	<i>S. aureus</i> , ≤3/60		
Bactericidal	microorganism	Dilution Method,	ATCC 6538 Pseudomonas	positive		
		(955.15), (964.02)	aeruginosa	1		
	3 lots of product	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ATCC 15442	P. aeruginosa,≤6/60		
	e los el predate			positive		
			Additional supplemental	positive		
			bacteria as required by	All others, 0/10		
			claim	positive		
Fungicidal	Suspension test or 10	AOAC Fungicidal	Trichophytoninterdigitale	Complete kill / No		
1 ungreiuur	carriers per lot	Activity Test	ATCC 9533	Growth		
	carriers per 10t	(955.17)	AICC 9555	GIUWUI		
	2 lots of product	(955.17)				
	2 lots of product	Modified AOAC				
		Use-Dilution				
Tuberculocidal	10 carriers per lot	AOAC	M. tuberculosis var bovis	No positive carriers		
Tubereurberuur	ro currers per lot	Tuberculocidal	(BCG)	no positive currers		
	2 lots of product	Activity Test	(000)			
	2 lots of product	(965.12)				
Virucidal	1-2 carriers per lot	ASTM E-1053	Specific virus claimed	≥3.0 log10 reduction		
· II GOIGHT	1 2 currents per rot	Test Method for	Specific Thus chamics			
		Efficacy of				
		Virucidal Agents				
		Intended				
		for Inanimate				
		Environmental				
		Surfaces				
Sporicidal	60 carriers per lot per	AOAC Sporicidal	Bacillus subtilis ATCC	Complete kill on all		
sportenal	surface (x2) per	Activity of	19659	carriers		
	microorganism	Disinfectants	Clostridium sporogenes	carriers		
	meroorganishi	(966.04)	ATCC 3584			
	3 lots of product	(200.04)	11100 3304			
Sanitizer for Non-	3 lots of product	ASTM E-1153	Staphylococcus aureus	≥3.0 log ₁₀ reduction		
Food Contact		Standard Test	ATCC 6538			
Surfaces		Method for	Pseudomonas aeruginosa			
		Efficacy of	ATCC 4352 -or-			
		Sanitizers	Enterobacter aerogenes			
		Recommended for	ATCC 13048			
		Inanimate, Hard,	1100 15040			
		Nonporous Non-				
		Food Contact				
		Surfaces				
		Surfaces				

US EPA

REGULATORY TESTING


- United States (EPA)
- All microorganisms on label must be tested
 - Bactericidal
 - S. aureus
 - 60 carriers with >10⁵, complete kill in $57+/60 \times 3$ lots
 - P. aeruginosa
 - 60 carriers with >10⁵, complete kill in 54+/60 x 3 lots
- Challenging to pass
- Challenging to test
- · Not directly indicative of real-world conditions

US EPA

- AOAC Sporicidal Test is even worse
- 0 positives allowed
 - 3 Lots
 - 60 suture loops
 - 60 porcelain penicylinders
 - B. subtilis
 - C. sporogenes
- 0 Positives allowed in 720 tested carriers
 - Qualitative test
- Propensity for false positives

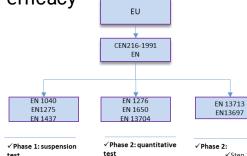
Europe and Rest of World

- -EU Methods divided into 3 tiers
 - Phase 1
 - Basic suspension tests
 - Phase 2
 - Simulation studies
 - Phase 3
 - Tests under practical conditions

-TGA

- -TGA Disinfectant Test (suspension)
- Hard Surface Test (increased carriers)

	CLAIM	TEST METHOD(S)	TEST ORGANISMS	PASS/FAIL CRITERIA
Basic Suspension Tests	Bacteria	EN 1040	Pseudomonas aeruginosa ATCC 15442	≥5.0 log _{to} reduction
			Staphylococcus aureus ATCC 6538	
	Fungi	EN 1275	Candida albicans ATCC 10231	\geq 4.0 log ₁₀ reduction
			Aspergillus brasiliensis ATCC 16404	
	Spores	EN 14347	Bacillus subtilis subsp. spizizenii ATCC 6633	\geq 4.0 log ₁₀ reduction
			Bacillus cereus ATCC 12826	
Quantitative Suspension Tests	Bacteria	EN 1276	Pseudomonas aeruginosa ATCC 15442	\geq 5.0 log ₁₀ reduction
			Staphylococcus aureus ATCC 6538	
			Escherichia coli ATCC 10536	
			Enterococcus hirae ATCC 10541	
	Fungi	EN 1650	Candida albicans ATCC 10231	\geq 4.0 log ₁₀ reduction
			Aspergillus brasiliensis ATCC 16404	
	Spores	EN 13704	Bacillus subtilis ATCC 6633	≥3.0 log ₁₀ reduction
Hard Surface Test	Bacteria	EN 13697	Pseudomonas aeruginosa ATCC 15442	≥4.0 log ₁₀ reduction
			Staphylococcus aureus ATCC 6538	
			Escherichia coli ATCC 10536	
			Enterococcus hirae ATCC 10541	
	Fungi		Candida albicans ATCC 10231	\geq 3.0 log ₁₀ reduction
			Aspergillus brasiliensis ATCC 16404	



Europe

EN 13697

- Basic Efficacy Test on a hard surface
- Does not work well for RTU products
 - 80% dilution
- 5 log reduction value. 3 log reduction for fungicidal efficacy

test:

✓ Step 1: suspension

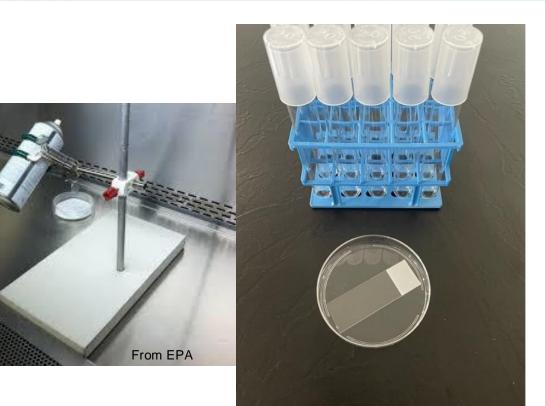
✓ Bactericidal

✓ Fungicidal ✓ sporicidal

✓ Bactericidal. fungicidal and sporicidal test

test

✓ Step 2: hard surface carrier test



Spray Testing

US Germicidal Spray Test

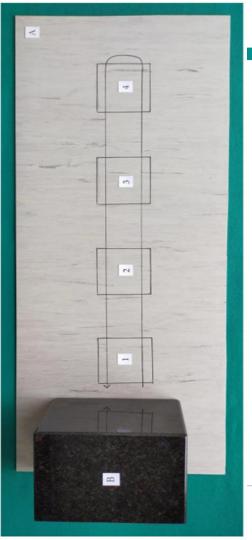
- Qualitative test
 - 60 slides for S. aureus and P. aeruginosa, 3 lots
 - 10 slides, 2 lots for supplementals

Challenges with reproducibility

Wipe Testing

EN 16615, European Wipes Test

- 4 FIELD TEST
 - 2.5 kg weight (for pressure)
 - Field #1 is inoculated
- S. aureus, P. aeruginosa, E. hirae
- 5 log reduction on test field 1 and ≤ 50 CFU on fields 2 – 4


US Modified Germicidal Spray Test

- "Origami" method
- 10 Slides per wipe
- QPM under development

From EPA

Biofilm and Other Testing

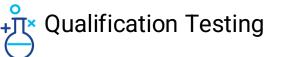
•CDC Reactor / ASTM Single tube method

•Pseudomonas aeruginosa and Staphylococcus aureus

•3 lots on three separate days

6 log reduction on five test couponsMaximum 10-minute contact time

Other tests include sanitizers, fabric, carpet, air, etc.



Disinfectant Testing and Test Methods

Supplier / Registration Testing

- US Environmental Protection Agency
- Europe and Rest of World

- Disinfectant Efficacy Testing (DET)
- In situ Evaluations

Disinfectant Qualification Testing

- In-vitro testing/disinfectant efficacy test (DET)
 - Laboratory study that looks at representative cleanroom surfaces and microorganisms

Disinfectant Efficacy Test

- Infinite number of microorganisms
- Nearly infinite number of test method variations
- Must understand real-world surfaces and conditions
- Must choose the best method available
- Must design the study to avoid misleading results
- Must select representative strains
 - American Type Culture Collection (ATCC) versus environmental monitoring (EM) isolates


	Microorganism	Examples						
More Resistant	Prions	Scrapie, Creutzfeld-Jacob disease, Chronic wasting disease						
	Bacterial Spores	Bacillus, Geobacillus, Clostridium						
	Protozoal Oocysts	Cryptosporidium						
	Helminth Eggs	Ascaris, Enterobius						
	Mycobacteria	Mycobacterium tuberculosis, M. terrae, M. chelonae						
	Small, Non-Enveloped Viruses	Poliovirus, Parvoviruses, Papilloma viruses						
	Protozoal Cysts	Giardia, Acanthamoeba						
	Fungal Spores	Aspergillus, Penicillium						
	Gram negative bacteria	Pseudomonas, Providencia, Escherichia						
	Vegetative Fungi and Algae	Aspergillus, Trichophyton, Candida, Chlamydomonas						
	Vegetative Helminths and Protozoa	Ascaris, Cryptosporidium, Giardia						
	Large, non-enveloped viruses	Adenoviruses, Rotaviruses						
	Gram positive bacteria	Staphylococcus, Streptococcus, Enterococcus						
Less Resistant	Enveloped viruses	HIV, Hepatitis B virus, Herpes Simplex virus						

Disinfectant Efficacy Testing EN 13697 ASTM E 2197

Test Product

Common Causes of Failure

General	 Testing biocide against inappropriate microbes Using inappropriate methods Inadequate planning Insufficient contact time
Neutralization	 Inadequate neutralization Neutralizer toxicity
Inoculum	 Poor viability of inoculum suspensions Fungal and bacterial spore suspensions prepared incorrectly
Surfaces	 Porous surfaces Coupons not amenable to steam sterilization Uneven inoculation or product coverage due to curvature or surface tension
Recovery	 Lethality after drying (e.g. <i>P. aeruginosa)</i> Setting artificially high log reduction targets Final plates are not countable Recovery method not validated

General

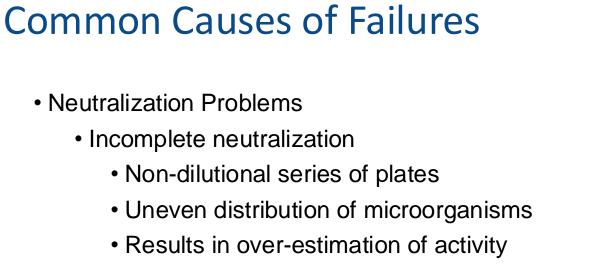
Common Causes of Failures
 General Causes of failures
 Improper dilution of concentrated disinfectant
 Generating data that is not useful
 Using AOAC test methods for coupon studies
 Ineffective chemistries

- Testing alcohol or disinfectants without sporicidal claims against bacterial endospores
- Contact time too short
 - Inadequate wet contact with inoculum

Inoculum Surfaces

Recovery

Neutralization

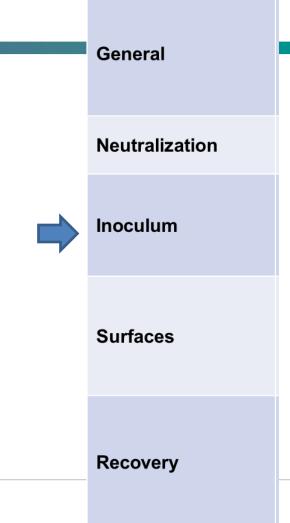


Neutralization

Inoculum

Surfaces

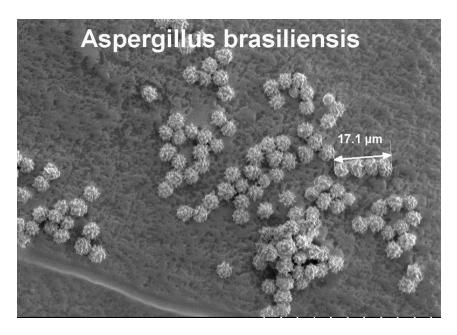
Recovery



- Any potential toxicity of neutralizer
- ASTM 1054

Common Causes of Failures

- Inoculum Problems
 - Making sure bacteria is at the right phase of growth
 - Clumping of the inoculum
 - Appropriate titers
 - Low titers
 - Desiccation impact
 - Too high can be unrepresentative
 - Hyphae elements in fungal suspension, isolate the fungal spores with fritted filter or glass wool (test spores and not mycelial mat)



Aspergillus brasiliensis

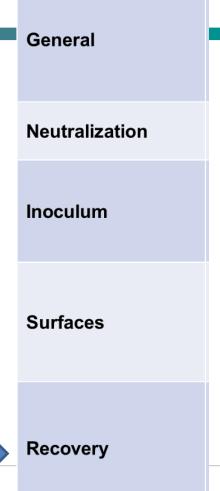
Common Causes of Failures

- Surface type and condition can have a huge impact on efficacy
- Preparation of surfaces prior to testing
 - Autoclaving may not be acceptable for some surfaces
 - Residues must be removed
 - No rusting or pitting of surfaces
- Some surfaces pose a challenge during qualification studies:

Neutralization

General

Inoculum


Surfaces

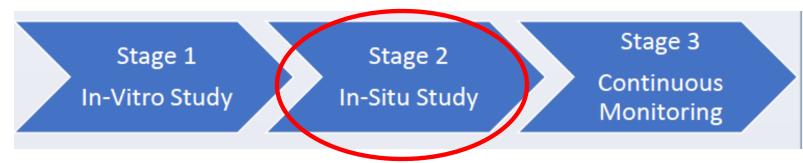
Recovery

Common Causes of Failures

- Typical surface recovery methods
 - Contact plates (rarely used)
 - Swabs
 - Direct inoculation of coupons into neutralizing media
 - Requires sterile coupons
 - May include manual or automated dislodging
 - Stomacher bags (Food Industry)
- Recovery method must be validated/verified
- Sonication, vortexing, and glass beads

Disinfectant Efficacy Test (DET) Study Tips

- AOAC methods are inappropriate for this testing (but some elements can be of value)
- EN-13697 (2019) and ASTM E2197-17 offer valuable insight into quantitative surface testing
- USP 43 <1072> is useful in determining log reductions
- Combining physical removal and chemical kill in one study is not recommended
 - Test the disinfectant, not spraying or wiping efficacy
- Using a contract lab to perform testing sounds easy but still requires time, effort, and vigilance
- Smaller coupons allow for better enumeration
- Auditing the contract lab is very useful


Requalification of DET

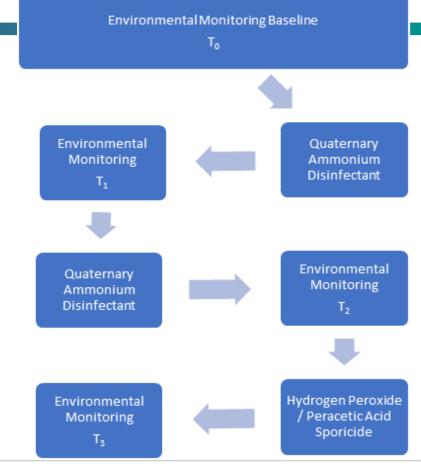
- Review annually to assess risk/ whether changes have occurred
- If new bioburden appears at high levels or inherently resistant organisms
- Re-evaluate every five to seven years to determine if any repeat testing is needed due to testing deficiencies

In Situ Evaluations

- In situ evaluation/triple clean
 - New cleanroom
 - At shutdown
 - After construction
 - After a power failure
 - After a worst-case event (e.g., a natural disaster)

Triple Cleaning

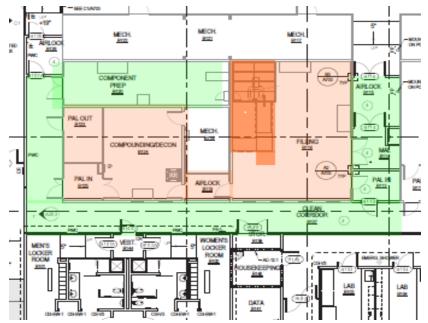
- No unified definition
- PDA TR "Facilities should strongly consider having special start-up cleaning and disinfection programs in place following "shutdowns" or when significant construction is performed."
- 2X Disinfectant and 1X Sporicide



PDA Aseptic Manufacturing Excellence Conference 2024

In Situ Evaluations

- Use actual cleaning procedure SOPs (update prior to validation study)
- "Worst-case" conditions
 - Higher microbial load
- Compare environmental data before and after procedures
- Should include data from more than one cleaning event



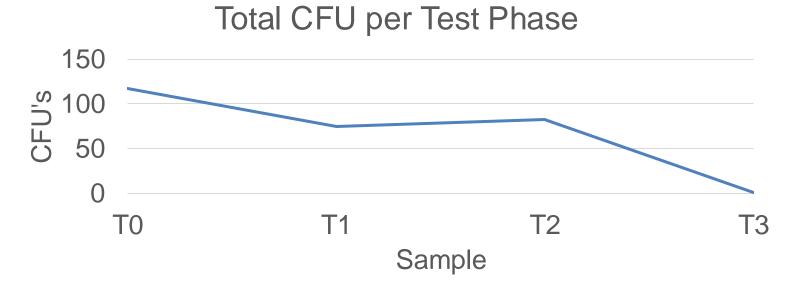
In Situ Evaluations

- During triple clean, sample critical areas of the facility
- The environmental monitoring can consist of RODAC[®] plating, settle plating, active air sampling and swabbing at these worst-case locations in the cleanrooms
- Microbiological data is never exact, but a positive observed trend can show that a simulated regimen of disinfectant/disinfectant
 / sporicide is effective under use conditions

In Situ Evaluations

Summary: Sample Collection and Test Results													
Room	ISO Class	Samples				CFU count				CFU/Plate			
KUUIII	ISO Class	T ₀	T 1	T ₂	T ₃	T ₀	T 1	T ₂	T₃	T ₀	T ₁	T ₂	T ₃
B107 Clean Corridor	8	16	16	16	16	10	8	10	0	0.63	0.50	0.63	0.00
B120 Prep Room	8	12	12	12	12	9	5	6	0	0.75	0.42	0.50	0.00
B123 Material Entrance	7	5	5	5	5	0	0	0	0	0.00	0.00	0.00	0.00
B125 Aseptic Gowning	7	6	6	6	6	4	3	0	0	0.67	0.50	0.00	0.00
B124 Compounding Room	7	16	16	16	16	15	7	5	0	0.94	0.44	0.31	0.00
B118 Pass Through	7	6	6	6	6	4	2	3	0	0.67	0.33	0.50	0.00
B116 Filling Suite	7	19	19	19	19	24	30	21	1	1.26	1.58	1.11	0.05
B116 Laminar Flow Hood	5	3	3	3	3	2	0	0	0	0.67	0.00	0.00	0.00
B116 Behind Curtain	5	10	10	10	10	10	2	0	0	1.00	0.20	0.00	0.00
B116 Fill Machine	5	14	14	14	14	29	3	0	0	2.07	0.21	0.00	0.00
B116 Isolator Finger Tips	5	13	13	13	13	4	0	0	0	0.31	0.00	0.00	0.00
B114 Material Exit	7	6	6	6	6	0	0	0	0	0.00	0.00	0.00	0.00
B113 Personnel Exit	7	6	6	6	6	6	15	37	0	1.00	2.50	6.17	0.00
Overall	NA	132	132	132	132	117	75	83	1	0.89	0.57	0.62	0.01

Micro data is never perfect – outliers should be addressed


"The investigator theorized that the outlier could be a result of unauthorized foot traffic during the study."

Summary: Sample Collection and Test Results													
Room	ISO Class	Samples			CFU count					CFU/Plate			
Koom	150 Class	T ₀	T 1	T ₂	T ₃	T ₀	T 1	T ₂	T ₃	T ₀	T 1	T ₂	T ₃
B116 Behind Curtain	5	12	12	12	12	20	1	2	1	1.67	0.08	0.17	0.08
B116 Filling Suite	7	21	21	21	21	40	5	6	3	1.90	0.24	0.29	0.14
B118 Air Lock	7	6	6	6	6	5	1	3	1	0.83	0.17	0.50	0.17
B124 Compounding Room	7	18	18	18	18	17	18	1	2	0.94	1.00	0.06	0.11
B125 Personnel Entrance	<mark>7</mark>	<mark>6</mark>	<mark>6</mark>	<mark>6</mark>	<mark>6</mark>	<mark>11</mark>	<mark>13</mark>	<mark>1</mark>	<mark>27</mark>	<mark>1.83</mark>	<mark>2.17</mark>	<mark>0.17</mark>	<mark>4.50</mark>
B123 Material Entrance	7	5	5	5	5	4	2	0	0	0.80	0.40	0.00	0.00
B120 Component Prep	8	13	13	13	13	21	18	18	4	1.62	1.38	1.38	0.31
B113 Personnel Exit	8	6	6	6	6	10	2	0	0	1.67	0.33	0.00	0.00
B114 Material Exit	8	6	6	6	6	2	1	3	0	0.33	0.17	0.50	0.00
B107 Clean Corridor	8	18	18	18	18	55	51	47	4	3.06	2.83	2.61	0.22
Fill Machine	5	20	20	20	20	11	4	0	0	0.55	0.20	0.00	0.00
Isolator Glove Fingertips	5	13	13	13	13	1	0	0	0	0.08	0.00	0.00	0.00
Overall	NA	144	144	144	144	197	116	81	42	1.37	0.81	0.56	0.29

In Situ Evaluations

Provides excellent in situ data mimicking a disinfection program

Industry Guidance

- Points to remember are that disinfectants are less effective against the higher numbers of microorganisms used in laboratory challenge tests than they are against the numbers found in clean rooms
- new verbiage from the not-yet-released revised USP <1072>: "Qualifying the effectiveness of cleaning and disinfection processes in situ is a more reliable and accurate measure of the cleaning and disinfection program's effectiveness than surface challenge tests. Qualification studies demonstrate that the cleaning and disinfection procedures performed by trained operators will consistently result in the required particulate and microbial cleanliness that returns the facility to its classified state as suitable for the intended use."

In-Situ Field Trial

"From my perspective, I am not opposed to *in-situ* field trial data and being mindful of "most challenging" conditions (my term to supplant the use of term worst case), which may in fact demonstrate, perhaps a bit more robustly, the disinfectant cleaning evaluation / validation.

I would offer if I was evaluating an *in-situ* disinfectant studies and the data supporting the scientific conclusions that the disinfectants were acceptable, I would hard pressed to point out that the *in-situ* study was not acceptable. Through the years, many have heard me say, ad nauseum, if the scientific data support the scientific conclusion, there shouldn't be a concern. Ultimately, it comes down to the support data."

Thomas Arista 7/21/2022

Thank You!

daniel_klein@steris.com

