pda.org

Using Quality Risk Management to Enable the Contamination Control Strategy

Developed by Amanda McFarland, MSc Amcfarland@valsource.com Sr. QRM & Microbiology Consultant ValSource, Inc (USA) Adapted and presented by James Vesper, PhD, MPH jvesper@valsource.com Director, Learning Solutions ValSource, Inc (USA) +1 585 230 1145

2023 Annex 1 Workshop Series (Singapore)

Topics

- QRM and the Pharmaceutical Quality System (Q10)
- The ICH Q9-R1 QRM model and contamination control strategy
- Risk management principles and options
- Beyond FMEA: Tools/methods that can be used
- Summary

2023 Annex 1 Workshop Series (Singapore)

ICH Q10 Pharmaceutical Quality System

Contamination Control Strategy Goal

Processes, equipment, facilities, and manufacturing activities QRM principles to provide a proactive means of identifying, scientifically evaluating and controlling potential risks to quality.

- **Define** all critical control points
- Assess the effectiveness of all the controls (design, procedural, technical and organizational)
- **Monitoring** measures employed to manage risks associated with contamination.

Contamination Control Strategy Goal

6

Contamination Control Strategy Goal

Processes, equipment, facilities and manufacturing activities QRM principles to provide a proactive means of identifying, scientifically evaluating and controlling potential risks to quality.

- Define all critical control points
- Assess the effectiveness of all the controls (design, procedural, technical and organizational)
- Monitoring measures
 - mployed to manage risks

Quality Risk Management Principles

The evaluation of risk to quality should be based on scientific knowledge and ultimately link to the **protection of the patient**. *Note: Risk to quality includes situations where <u>product availability</u> may be impacted, leading to potential patient harm.*

The level of effort, formality and documentation of the QRM process should be **commensurate with the level of risk**.

Use of knowledge management and quality risk management enable the PQS. These enablers provide the means for **scienceand risk- based decisions related to product quality**.

Applying QRM Principles

Risk Management in Eight Questions

- 1. What can go wrong?
- 2. What is the likelihood that it could happen?
- 3. What are the consequences if it does happen?
- 4. What are the "priority risks" to address?
- 5. What can be done and what are the options available?
- 6. What can be done to communicate what has been done?
- 7. What can be done to document what has been done?
- 8. How will we know if any conditions or assumptions have changed?

What is Risk-based Decision Making (RBDM)?

Risk-based decision making: an approach to, or a process of, making decisions that considers knowledge about risks relevant to the decision and whether risks are at an acceptable level.

Risk-based decisions

2023 Annex 1 Workshop Series (Singapore)

Selecting the Best Risk Management Approach

Uncertainty

• How much do you **know** about the system you are assessing?

Complexity

• How complex is the system?

Importance

• What is the criticality of the system?

Risk Parameters

• How will risk be measured?

Measurement of Overall Risk

pda.org

Checklists and Decision Trees

15

Hazard Analysis & Critical Control Points (HACCP)

Customization of risk tool to meet a specific scope/objective

ANSI Standard: Aseptic Processing Risk Assessment Tool (being developed by PDA)

- Evaluate entire suite of Aseptic Processing Controls
- Criteria based on reliable evidence
- Detection linked to prediction
- Controls ranked according to ability to:

Contamination Control Strategy

Questions for discussion

How will you / your firm identify and map out the risk assessments needed for the CCS? What risk assessment tools/methods will be (or have been) used for this effort?

2.

3. What do you see as the biggest challenge in pulling together the risk assessments for the CCS?

Thank You

VALSOURCE

Innovative Solutions. Sustainable Results.

www.valsource.com

Amanda McFarland, M.Sc amcfarland@valsource.com

James Vesper, PhD, MPH jvesper@valsource.com

