

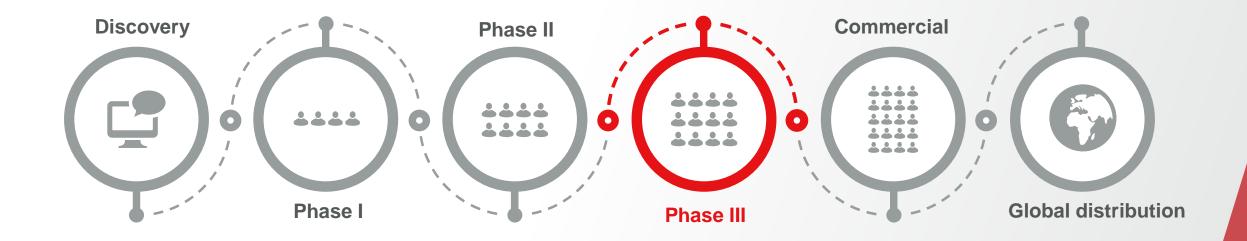
Choosing the right CDMO for late-phase clinical trials

Christy Eatmon, SME Sterile Drug Products Thermo Fisher Scientific October, 2024

The world leader in serving science

1 Proprietary & Confidential | Pharma Services | 2024

Table of contents


Introduction

- Defining late phase
- 3 Cost and scale of late phase work
 - Criteria to consider when evaluating a CDMO
 - The pathway to commercialization, A case study
 - Wrap up and closing remarks

5

Product life cycle – Defining phase 3

Phase	Patient Enrollment	Length of Study	% of Drugs that move to next phase
1	20-100	Several Months	70
2	Several hundred	Several Months – 2 years	33
3	300-3000	1-4 years	25-30

Cost in Millions \$

	Phase 1	Phase 2	Phase 3
Oncology	4.5	11.2	22.1
Pain/Anesthesia	1.2	17.0	52.9

The work completed by phase 3

At the initiation of Phase 3, an enormous amount of work has been done!

Work Completed:

- Formulation Development
- Process Development
- Animal studies
- Safety Studies
- Stability Studies
- Dose Escalation
- Analytical Method Development
- Phases I and II

Decisions Made:

- Presentation
- Dose
- Components
- Clinical Trial Study Design
- Commercial Supply Strategy

Work Ahead:

- Phase 3 Study
- Method Validation
- Risk assessment
- Identify CPPs
- Scale up
- Registration
- Process Validation
- Packaging Design
- Regulatory Submission

Phase 3 will build on the previous results and compare efficacy with similar products

Why move to a new CDMO at phase 2b/3

Most common reasons for transitioning to a new CMO at phase 3 include:

Scale

Current CMO has batch size limitations

Commercial Capability Current CMO supports clinical only

Experience

Current CMO does not have experience with PV

Multiple Vendors Desire to simplify for long term partnership

Presentation change

Current CMO supports vials only and PFS is desired

Flexibility

Options for dual sourcing, global presence

Regulatory Track Record

Relationship with agencies and successful launches

Expertise

Technical support to ensure smooth transfer

Price

Larger batch sizes decrease the per unit cost

End to End Service

Ability to perform multiple services under one roof

Important criteria to consider during CDMO evaluation

Regulatory Support and Track Record

Technical Expertise

Thermo Fisher

Process Validation Support

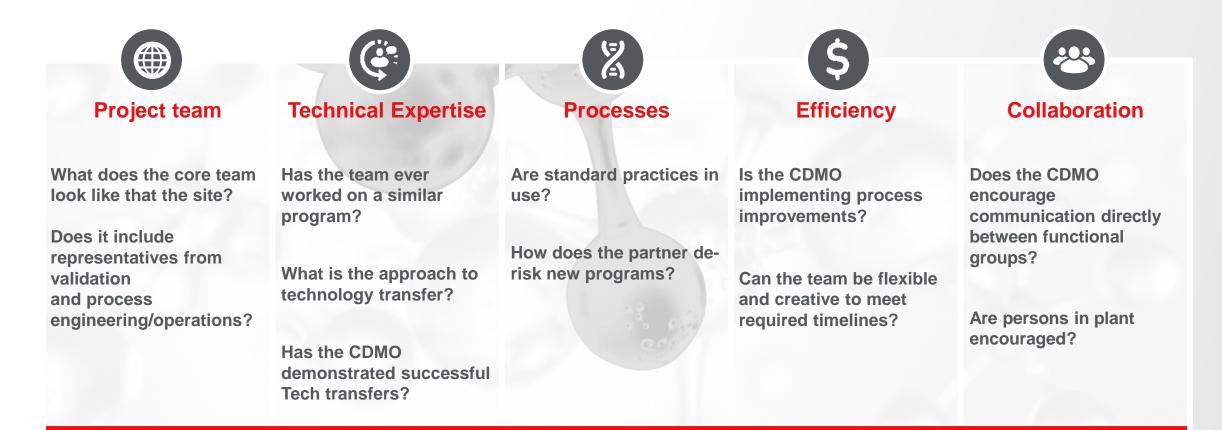
Global Footprint

Scale and Options

Relationship

Culture

Regulatory support and track record


Consider the site and company track record:

- How often is the site inspected?
- Does the site have any 483s? If so were they addressed?
- What regulatory bodies have visited the site?
 - Do those bodies align with intended markets?

Consider the level of regulatory support you need:

- How many other similar products has the site moved from late phase to commercial?
- Does the site have a local team dedicated to regulatory support?
- Can the site provide all the required information to support your filing?

Validation support and technical expertise

Questions worth asking the intended CDMO before you sign on the dotted line

Defining a technical match

Capacity, scale, timeline and cost are all important to consider; but a technical match is critical for success. Thermo Físhei

Things to consider include:

- Expertise with product type small vs large molecule, lyo vs. liquid product
- Is the tech transfer process clear?
- Can the CMO either match or improve on the equipment and process design.
- Do the analytical services offered match the required product testing?

Scale and options

Thermo Fisher

Does the CDMO have the ability to **scale up**? Have they presented **options** if the scale increases? Does the CDMO have the **capacity** to meet the commercial demand?

Is the site **flexible** in terms of processing and making adjustments required for your specific product? Does the CDMO have built in **redundancy** in the case that a second source is needed?

Relationship and culture

ThermoFisher

SCIENT

2

How accessible and involved is the management team?

How does the project team work internally

and externally?

Does the site see the customer as a critical partner?

Does the site value the expertise of the client's technical counterparts?

Technology transfer: A case study

Background

Clinical batches were successfully completed at another in-network site at small scale.

Process knowledge:

Well defined parameters, however, difficult to manage at scaled-up batch size.

Project risks:

- Critical hold times put batches at risk
- Additional validation required for PV

Sensitivities:	Hold times:	Batch processing:
 Oxygen Stainless Steel Heat Hygroscopic API 	 6 hours from API addition to completion of pH adjustment 20 hours from API addition to Lyo start w/ IPC 	 Nitrogen Sparging In disposables DO measurements Localized high pH Temperature
	 Filling line hold time of 30 hours from SIP to end of fill 	Monitoring/Active Cooling

Case study results

Outcome

Three registration batches were successfully completed

Process improvements were made along the way, with a robust process designed and executed prior to PV batch production.

Commercial launch from an additional network site was completed in the following year.

Keys to successful registration/validation:

Constant updates and

good communication

between operations

and QC labs

Customer on site during production allowed for expedited decision making

Very specific batch record instructions and operator training for highly technical batch

Summary and key takeaways

Leverage product and process knowledge

- Adopt scientific and risk-based approach
- Identify CPPs and CQAs
- Utilize early development data

Align with expectations and regulatory requirements

- Complete all required stage gates before moving on to PPQ
- Risk-based process evaluation, data driven improvements

Plan and execute

- Define requirements at each project phase
- Implement proper documentation throughout development and clinical phase work
- Finalize production strategy

Thank you

16 Proprietary & Confidential | Pharma Services | 2024